BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, VOL. 49 (9), 2645-2646 (1976)

Photochemical Conversion of Methoxyketene Intermediate into Methyl Ester in the Photolysis of 2-Methoxy-3-diphenylmethyl-4-diphenylmethylene-2-cyclobuten-1-one

Fumio Toda, Yozo Todo, and Eishiro Todo

Department of Industrial Chemistry, Faculty of Engineering, Ehime University, Matsuyama 790

(Received April 12, 1976)

Synopsis. The photolysis of methylenecyclobutenone in the presence of benzophenone or oxygen affords the one carbon diminished product, methyl 4,4-diphenyl-2-diphenylmethyl-2,3-butadienoate. The reaction pathway is discussed.

Nozaki and his collaborators reported that the photochemical conversion of diphenylketene into benzophenone under nitrogen atmosphere in a higher yield than 50% is puzzling.¹⁾ We found that the photolysis of methylenecyclobutenone (1) in the presence of benzophenone or oxygen affords the one carbon diminished product, methyl 4,4-diphenyl-2-diphenylmethyl-2,3-butadienoate (5), and that the reaction can well be rationalized by means of the cycloaddition reaction of the methoxyketene intermediate (2) initially produced by the α -cleavage of 1, with benzophenone or oxygen.

The irradiation of a solution of 1 and benzophenone in benzene under nitrogen atmosphere for 5 h afforded 5 in 31% yield. The structure of 5 was elucidated on the basis of its reaction with bromine which affords 3-bromo-4,4-diphenyl-2-diphenylmethyl-2-buten-4-olide (6). Base-catalyzed hydrolysis of 5 afforded the corresponding acid (7). The formation of 5 can be interpreted by assuming the cycloaddition product (3) of 2 and benzophenone as an intermediate. The intermediacy of 2 is undoubted, since the photochemical α -cleavage of methylenecyclobutenone to alleneketene has been established.²⁾ The ring cleavage of 3 can give 5 and diphenylketene, the latter being converted into benzophenone in the same manner as reported.¹⁾

The photolysis of 1 in benzene under oxygen atmosphere also afforded 5 in 10% yield. This can be interpreted by assuming 4 as an intermediate, decarboxylation of which affords 5. Since neither benzophenone nor oxygen is necessary for the photochemical α -cleavage of methylenecyclobutenone, α benzophenone and oxygen

would only be used for the formation of 3 and 4, respectively. In their absence, the photolysis of 1 in benzene did not give 5, 1 being recovered unchanged. This shows that the photochemical α -cleavage of 1 to 2 is reversible.

Experimental

All the melting points are uncorrected. Photolysis was carried out at room temperature, with light from a 400-W high-pressure mercury lamp (Riko Kagaku Sangyo Co.), filtered through Pyrex glass. The IR, UV, and NMR spectra were measured in Nujol mull, CHCl₃, and CDCl₃, respectively. The mass spetrum was measured with an ionization energy of 75 eV.

Photolysis of 1 in the Presence of Benzophenone. A solution of 1 (0.1 g) and benzophenone (0.07 g) in benzene (250 ml) was irradiated under nitrogen atmosphere for 8 h. The crude crystals remaining after evaporation of the solvent were recrystallized from MeOH to afford 5 as colorless prisms; 0.03 g (31 %); mp 135—136 °C. IR: 1940 (C=C=C), 1720 (C=O), and 1240 cm⁻¹ (ester); λ_{max} : 252 nm (ε , 18800); NMR: 2.5—3.4 (m, Ph, 20H), 4.57 (s, CH, 1H), and 6.34 τ (s, Me, 3H); MS m/e (rel intensity): 416 (M+, 25), 385 (M+-OMe, 56), 357 (385-CO, 66), and 167 (Ph₂ČH, 100).

Found: C, 86.37; H, 5.73%. Calcd for $C_{30}H_{24}O_2$: C, 86.51; H, 5.81%.

Photolysis of 1 under Oxygen Atmosphere. A solution of 1 (0.1 g) in benzene (250 ml) was irradiated under oxygen atmosphere for 15 h. The crude crystals remaining after evaporation of the solvent were recrystallized from MeOH to afford 5; 0.01 g (10%).

Conversion of 5 into 6. Bromine (0.03 g) was added at room temperature to a solution of 5 (0.1 g) in CHCl₃ (10 ml). The crude crystals remaining after evaporation of the solvent were recrystallized from AcOEt to afford 6 as colorless prisms; 0.1 g (86%); mp 150 °C. IR: 1760 (C=O), 1630 (C=C), and

1140 cm⁻¹ (lactone); λ_{max} : 245 nm (ε , 9600); NMR: 2.4—2.8 (m, Ph, 20H) and 4.38 τ (s, CH, 1H).

Found: C, 72.42; H, 4.41%. Calcd for C₂₉H₂₁O₂Br: C, 72.35; H, 4.40%.

Hydrolysis of 5. A solution of 5 (0.1 g) in 5% KOH–MeOH (20 ml) was heated under reflux for 5 h. The crude crystals formed after the decomposition of the reaction mixture with water were recrystallized from hexane–CH₂Cl₂ to afford 7 as colorless needles; 0.09 g (93%); mp 185—186 °C. IR: 2620 (CO₂H), 1940 (C=C=C), and 1670 cm⁻¹ (C=O); λ_{max} :

243 (19200) and 253 nm (ϵ , 19200); NMR: -1.33 (s, CO₂H, 1H), 2.6—3.1 (m, Ph, 20H), and 4.61 τ (s, CH, 1H).

Found: C, 86.49; H, 5.42%. Calcd for $C_{29}H_{22}O_2$: C, 86.54; H, 5.51%.

References

- 1) H. Nozaki, M. Nakano, and K. Kondo, *Tetrahedron*, 22, 477 (1966).
 - 2) F. Toda and E. Todo, Chem. Lett., 1974, 1279.